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ABSTRACT

A comprehensive model for calculating the viscosity of aqueous electrolyte solutions has

been developed. The model includes a long-range electrostatic interaction term,

contributions of individual ions and a contribution of specific interactions between ions or

neutral species. The long-range electrostatic term is obtained from the Onsager-Fuoss theory

whereas the individual ionic contributions are calculated using the Jones-Dole B coefficients.

A technique for predicting the temperature dependence of the B coefficients has been

developed on the basis of the concept of structure-breaking and structure-making ions. The

contribution of specific interactions between species, which is dominant for concentrated

solutions, has been found to be a function of the ionic strength. The model reproduces the

viscosity of aqueous systems ranging from dilute to concentrated solutions (up to ca. 30 m)

at temperatures up to 573 K with an accuracy that is appropriate for modeling industrially

important systems. In particular, the viscosity of multicomponent systems can be accurately

predicted using parameters obtained from single-solute systems.

KEY WORDS: viscosity, aqueous solutions, electrolytes



3

1. INTRODUCTION

Knowledge of viscosity of electrolyte solutions is needed for the design of numerous

industrial processes and, at the same time, provides useful insights into solution structure and

interactions. Theoretical investigations of viscosity have been focused mainly on systems

containing a single solute in dilute solutions (cf. a review by Horvath [1]). A limiting law for

viscosity was developed by Onsager and Fuoss [2] using the Debye-Hückel equilibrium

distribution functions. For somewhat more concentrated solutions (up to 0.1-0.2 M), Jones

and Dole [3] found that the relative viscosity is given by

η η ηr Ac Bc= = + +/ /
0

1 21 (1)

where η0 is the viscosity of pure water and the Ac1 2/ term is identical to that obtained from a

limiting-law theory of long-range electrostatic interactions in a dielectric continuum [2]. The

coefficient B was found to be an additive property of ions and give a useful measure of ion-

solvent interactions. An extended version of eq. 1 was proposed by Kaminsky [4] and used

by several authors [5, 1] to fit the results of viscosity measurements at higher concentrations:

η η ηr Ac Bc Dc= = + + +/ /
0

1 2 21 (2)

The Jones-Dole equation proved useful because the B coefficients could be related to the

properties of ions [1]. However, eq. 2 is not valid for systems containing more than one salt

and cannot reproduce data for concentrated solutions (beyond ca. 1-3 M). Alternative models

developed for concentrated solutions [1] are also applicable only for single-solute systems or

do not take into account the speciation of the solution. Therefore, there is a need for a model

that would reproduce the viscosity of multicomponent solutions in the full ranges of

concentration and temperature that are encountered in industrial applications.

The objective of this study is to develop a comprehensive, engineering-oriented method

for calculating viscosity of aqueous systems ranging from dilute to very concentrated. The

method should be consistent with a realistic speciation model so that the viscosity model can

be used in conjunction with speciation-based models for thermodynamic properties. Emphasis
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will be put on developing a formalism that makes it possible to predict viscosity of

multicomponent solutions on the basis of information obtained from single-solute systems.

2. CONCENTRATION DEPENDENCE OF VISCOSITY

The main advantage of the Jones-Dole equation is the recognition of a clear distinction

between the long-range electrostatic term, contributions of individual ions (as quantified by

the B coefficients) and contributions of interactions between ions or neutral species.

Therefore, we can write a general expression for the relative viscosity ηr , i.e.,

η η η ηr r
LR

r
species

r
species species= + + + −1 (3)

where the superscript LR stands for the long-range contribution. The η r
LR term can be

calculated from a model that recognizes electrostatic interactions between point charges in a

dielectric continuum. Onsager and Fuoss [2] developed an analytical solution for this model

for systems containing any number of ions. Working equations resulting from the Onsager-

Fuoss theory are summarized in the Appendix. To compute the η r
LR term, it is necessary to

know the limiting conductivities of individual ions in addition to the dielectric constant of the

solvent. The ionic conductivities are calculated as a function of temperature using a method

developed by Anderko and Lencka [6].

The additivity of the B coefficients, which is well documented for single-solute and two-

solute systems [7], can be easily generalized for multicomponent systems. Therefore, the

η r
species term is an additive sum of contributions of individual species, i.e.,

η r
species

i i
i

c B= ∑ (4)

where ci and Bi are the molar concentration and B coefficient of the i-th species.

In contrast to the η r
species term, the η r

species species− contribution depends on interactions

between various species that exist in the system. In this work, we develop an expression for

η r
species species− that is valid for multicomponent solutions. In the extended Jones-Dole equation

for single-solute systems (eq. 2), the η r
species species− term is proportional to c2 (i.e., Dc2). Here,

we postulate that the η r
species species− term for multicomponent systems is proportional to I2.
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Further, we postulate that this term is made up of contributions of all species pairs in the

system. This implies that η r
species species− is expressed by summation over all species pairs, i.e.,

η r
species species

i j ij
ji

f f D I− = ∑∑ 2 (5)

where fi and fj are fractions if the i-th and j-th species, respectively, and Dij is the interaction

parameter between i and j. The definition of the fraction of the i-th ion in eq. 5 should be

guided by the empirical effectiveness of the final expression for multicomponent systems.

Tests made using a total of 17 systems with two or three solutes revealed that the best

agreement is obtained when fi is a molar fraction adjusted for the charge of species, i.e.,

f
c z

c zi
i i

k k
k

=
∑

/ max( ,| |)

/ max( ,| |)

1

1
(6)

where the factor max( ,| |)1 zi ensures that fi reduces to the molar fraction for neutral species.

For concentrated solutions, it has been found that the parameter Dij  in eq. 5 depends on the

ionic strength. The frequently observed steep increase in viscosity for very concentrated

systems necessitates the use of an exponential function, i.e.,

D d d I d Iij = + +1 2 3
3 20 08exp( . )/  (7)

where d1, d2 and d3 are empirical parameters. The parameters d2 and d3 are required only for

systems with a substantial ionic strength (usually above 5 molal).

3. TEMPERATURE DEPENDENCE OF PARAMETERS

For most electrolyte systems, viscosity data are available only at one temperature (such as

298.15 K) or over narrow temperature ranges. Therefore, it is necessary to establish the

temperature dependence of the parameters B and D so that viscosity can be extrapolated well

beyond the range of experimental data.

To express the temperature dependence of the parameter B, it is convenient to use the

equation of Out and Los [5], i.e.,

[ ]B B B k TE s= + − −exp ( . )27315 (8)
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This equation accurately reproduces the gradual decrease of the absolute value of dB/dT,

which tends to zero at high temperatures. To evaluate the coefficients of eq. 8, the

parameters B have been calculated by extrapolating the function B Dc+ =

( / ) //η η0
1 21− − Ac c  to zero concentration. Experimental data from the compilation of

Lobo and Quaresma [8] have been used for this purpose. Subsequently, the B parameters for

individual electrolytes have been decomposed into ionic contributions using the standard

convention B B
K Cl+ −= [5]. Then, the coefficients of eq. 8 have been evaluated for a total of

41 ions for which the temperature range of experimental data was sufficient. It has been

found that the coefficient k in eq. 8 can be assigned a common value of 0.023 without

impairing the quality of reproducing the B parameters. Therefore, eq. 8 with k=0.023 can be

further used as a starting point for developing a generalized correlation for predicting the

temperature dependence of B.

A generalized expression for B has to recognize the structural effects caused by the

interactions of ions with the H2O hydrogen-bonded network. In particular, these effects

manifest themselves in the positive values of dB/dT for structure-breaking ions and negative

values for structure-making ones [5, 9]. As a measure of the structure-making and structure-

breaking effects, we utilize the standard entropy of hydration (∆Shyd), which is widely

available from thermodynamic measurements [9]. The correlation between the parameter Bs

and ∆Shyd is shown in Fig. 1. It is noteworthy that three linear relationships are obtained for

monovalent, divalent and trivalent ions. These relationships are represented by:

B Ss hyd= − −0 00233 0 297. .∆    for monovalent ions (9)

B Ss hyd= − −0 0020 0520. .∆    for divalent ions (10)

B Ss hyd= − −0 0020 0840. .∆    for trivalent ions (11)

The correlation between Bs and ∆Shyd appears to be more significant that the correlations that

have been previously reported between the B coefficients at constant temperature and ∆Shyd

or related quantitites [1]. Eqs. 9-11 can be used in conjunction with a single value of B
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(usually, at 298.15 K) to predict the complete temperature dependence of the ionic B

parameters according to eq. 8.

The temperature dependence of the interaction parameters (i.e., D in eq. 5) is weaker that

that of the single-ion parameters (i.e., B). For ion-ion interactions, the D parameters are

almost always positive in contrast to the B parameters, which can be either positive or

negative. Negative values of D are observed only for interactions between neutral aqueous

species. For the representation of accurate viscosity data over wide temperature ranges, an

exponential temperature dependence is used for the parameters di in eq. 7, i.e.,

d d d Ti i i= −, ,exp[ ( . )]0 1 27315 (12)

4. RESULTS AND DISCUSSION

The proposed model requires the knowledge of speciation in the system of interest so that

the summations over individual species (eqs. 4 and 5) can be computed. To obtain the

speciation, the thermodynamic model developed by OLI Systems [10] has been used in this

study. The parameters of the viscosity model have been derived using a two-step procedure,

i.e.,

(1)  The B coefficients were obtained from experimental data for dilute solutions and

decomposed into individual ionic contributions. Subsequently, the parameters of eq. 8

were calculated by fitting eq. 8 to the ionic B coefficients. If the ionic B coefficients were

available only at one temperature or in a narrow temperature interval, their temperature

dependence was predicted using eqs. 9-11.

(2)  The interaction coefficients di (cf. Eq. 7) were obtained for pairs of species by regressing

experimental data for single-solute systems using the previously developed data base of B

coefficients.

Figures 2-4 show the representation of experimental data [8] for single-solute systems. In

all cases the model represents the experimental data within experimental uncertainty. Fig. 2

shows the results for both strong and weak 1:1 electrolytes. It is noteworthy that the
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viscosity of strong electrolytes rapidly increases with concentration whereas that of weak

electrolytes slowly increases or decreases. The behavior of weak electrolytes, such as acetic

acid or HCN, is similar to the behavior of nonelectrolyte solutions. Fig. 3 shows the results

for 2:1 electrolytes. In general, the viscosity of 2:1 electrolytes rises more rapidly with

concentration than that of 1:1 electrolytes. This is especially notable for the 2:1 electrolytes

that do not form strong complexes. In the case of electrolytes that show strong complexation

(e.g. zinc halides), the complexation limits the ionic strength of the solution and,

subsequently, moderates the increase in viscosity as concentration increases. Fig. 4 shows the

viscosity of 3:1 electrolytes. In this case, the viscosity rises even more steeply with

concentration so that the relative viscosity can even exceed 100.

Multicomponent systems provide a stringent test of the performance of the model. To

validate the model against multicomponent data, the interaction parameters obtained from

data for single-solute systems were used to predict the viscosity of systems with two or three

solutes. The results are shown in Figs. 5 and 6 for the systems NaCl + HCl + KCl and

(NH4)2SO4 + KCl + Na2SO4, respectively. As illustrated in Figs. 5 and 6, the quality of

predicting the viscosity of multicomponent systems is similar to the quality of reproducing the

data for single-solute systems.

5. CONCLUSIONS

The proposed model is capable of accurately reproducing the viscosity of complex

aqueous solutions that are encountered in industrial practice. The model is applicable for

concentrated solutions (up to ca. 30 m) at temperatures up to 573 K. It is particularly

important that the conductivity of multicomponent systems can be predicted using parameters

obtained from data for single-solute systems.

6. APPENDIX

According to the Onsager-Fuoss [2] theory, the η r
LR term is given by

η
η ε

µ
λr

LR i i

ii

N

n
n

n

a
I

T

z
c

I

= 













 −∑ ∑

=

∞1 2
4

0

1 2

0

/

r s (A-1)
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where a is a numerical constant defined by

a
Fe N

k
A=







 =

2 8

0

1 2
10

480 1000
0 36454

π ε

/

. (A-2)

where F, e, NA, ε0 and k are the Faraday constant, electron charge, Avogadro constant,

permittivity of vacuum and Boltzmann constant, respectively. The numerical factors in eq. A-

2 are consistent with the use of concentrations in mol/dm3 and ionic conductivity in Ω-1 mol-

1cm2. I is the ionic strength in mol/dm3. In the first summation on the right hand side of eq. A-

1, NI is the total number of different ions in the mixture, zi is the absolute value of the ionic

charge, λi is the equivalent conductance of ion i and µi is defined as

µ i
i i

j j
j

N

c z

c z
I

=

∑

2

2

(A-3)

The vector r is given by

( )
r

z

z
i

i i= −1
λ
λ/

            i = 1, ..., NI (A-4)

where the average ( )z / λ  is calculated as

( )
( )

z

c z z

c z

i i i i
i

N

i i
i

N

I

I
/

/

λ
λ

=
∑

∑

2

2

(A-5)

In the second summation in eq. (A-1), cn is a numerical factor defined as

c0 3 2= − + (A-6)

c
pn

p

n

= − −














=

∑2 2 2
1 2

0

/
      n = 1, ..., ∞ (A-7)

The vectors sn are given by a recursive formula, i.e.,

s s0 = (A-8)

s Hsn n= −1 (A-9)

where the elements of the vector s are defined as
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( )
( )

s
z z

z
j j

j

j

= −












µ

λ
λ

λ

/

/

2

(A-10)

The second-order average ( )z / λ 2
is calculated as

( )
( )

z
c z z

c z

i i i i
i

N

i i
i

N

I

I
/

/

λ
λ

2

2 2

2

=
∑

∑
(A-11)

The matrix H in eq. A-9 is defined as

h
z

z z

z

z zji ji k
k k

k k j jk

N

j
j j

i i j j
ji

I

=
+

+
+

−∑2 2δ µ
λ

λ λ
µ

λ
λ λ

δ
/

/ /

/

/ /
(A-12)

where δij is the Kronecker symbol. The second summation in eq. (A-1) usually reaches

convergence for n ranging from 4 to 6.
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FIGURE CAPTIONS

Fig. 1. Relationship between the parameter Bs (eq. 8) and the entropy of hydration of ions.

The circles represent the values obtained by fitting eq. 8 to experimental values of the

viscosity B coefficients. The lines are obtained from eqs. 9-11.

Fig. 2. Representation of viscosity for strong and weak 1:1 electrolytes at 298.15 K. The

symbols denote experimental data [8] and the lines have been calculated using the model.

Fig. 3. Representation of viscosity for 2:1 electrolytes at 298.15 K. The symbols denote

experimental data [8] and the lines have been calculated using the model.

Fig. 4. Representation of viscosity for 3:1 electrolytes at 298.15 K. The symbols denote

experimental data [8] and the lines have been calculated using the model.

Fig. 5. Viscosity of the system NaCl + HCl + KCl for various molar ratios of components.

The symbols denote experimental data [11, 12]. The dashed and solid lines have been

calculated for single-solute and mixed systems, respectively.

Fig. 6. Viscosity of the system (NH4)2SO4 + KCl + Na2SO4 for various molar ratios of

components. The symbols denote experimental data [8, 11]. The dashed and solid lines have

been calculated for single-solute and mixed systems, respectively.
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